Wednesday, May 18, 2011

RENAL FUNCTION TESTS II

Kidney function tests

Kidney function tests are common lab tests used to evaluate how well the kidneys are working. See links below for details of how each test is performed:

1.BUN

BUN stands for blood urea nitrogen. Urea nitrogen is what forms when protein breaks down.
A test can be done to measure the amount of urea nitrogen in the blood.

How the Test is Performed

Blood is typically drawn from a vein, usually from the inside of the elbow or the back of the hand. The site is cleaned with germ-killing medicine (antiseptic). The health care provider wraps an elastic band around the upper arm to apply pressure to the area and make the vein swell with blood.
Next, the health care provider gently inserts a needle into the vein. The blood collects into an airtight vial or tube attached to the needle. The elastic band is removed from your arm.
Once the blood has been collected, the needle is removed, and the puncture site is covered to stop any bleeding.
In infants or young children, a sharp tool called a lancet may be used to puncture the skin and make it bleed. The blood collects into a small glass tube called a pipette, or onto a slide or test strip. A bandage may be placed over the area if there is any bleeding.

How to Prepare for the Test

Many drugs affect BUN levels. Before having this test, make sure the health care provider knows which medications you are taking.
Drugs that can increase BUN measurements include:
  • Allopurinol
  • Aminoglycosides
  • Amphotericin B
  • Aspirin (high doses)
  • Bacitracin
  • Carbamazepine
  • Cephalosporins
  • Chloral hydrate
  • Cisplatin
  • Colistin
  • Furosemide
  • Gentamicin
  • Guanethidine
  • Indomethacin
  • Methicillin
  • Methotrexate
  • Methyldopa
  • Neomycin
  • Penicillamine
  • Polymyxin B
  • Probenecid
  • Propranolol
  • Rifampin
  • Spironolactone
  • Tetracyclines
  • Thiazide diuretics
  • Triamterene
  • Vancomycin
Drugs that can decrease BUN measurements include:
  • Chloramphenicol
  • Streptomycin

How the Test Will Feel

When the needle is inserted to draw blood, some people feel moderate pain, while others feel only a prick or stinging sensation. Afterward, there may be some throbbing.

Why the Test is Performed

The BUN test is often done to check kidney function.

Normal Results

7 - 20 mg/dL. Note that normal values may vary among different laboratories.

What Abnormal Results Mean

Higher-than-normal levels may be due to:
  • Heart attack
  • Kidney disease,
Lower-than-normal levels may be due to:
  • Liver failure
  • Low protein diet
  • Malnutrition
  • Over-hydration
Additional conditions under which the test may be done include:
  • Acute nephritic syndrome
  • Atheroembolic kidney disease
  • Diabetic nephropathy/sclerosis
  • Epilepsy
  • Goodpasture syndrome
  • Hepatokidney syndrome
  • Lupus nephritis
  • Malignant hypertension (arteriolar nephrosclerosis)
  • Secondary systemic amyloidosis
  • Wilms' tumor

Risks

Veins and arteries vary in size from one patient to another and from one side of the body to the other. Obtaining a blood sample from some people may be more difficult than from others.
Other risks are slight but may include:
  • Excessive bleeding
  • Fainting or feeling light-headed
  • Hematoma (blood accumulating under the skin)
  • Infection (a slight risk any time the skin is broken)

Considerations

For people with liver diseases the BUN level may be low even if the kidneys are normal.

Alternative Names

Blood urea nitrogen

2.Creatinine - blood

Creatinine is a breakdown product of creatine, which is an important part of muscle. This article discusses the laboratory test to measure the amount of creatinine in the blood.

How the Test is Performed

Blood is drawn from a vein, usually from the inside of the elbow or the back of the hand. The site is cleaned with germ-killing medicine (antiseptic). The health care provider wraps an elastic band around the upper arm to apply pressure to the area and make the vein swell with blood.
Next, the health care provider gently inserts a needle into the vein. The blood collects into an airtight vial or tube attached to the needle. The elastic band is removed from your arm.
Once the blood has been collected, the needle is removed, and the puncture site is covered to stop any bleeding.
In infants or young children, a sharp tool called a lancet may be used to puncture the skin and make it bleed. The blood collects into a small glass tube called a pipette, or onto a slide or test strip. A bandage may be placed over the area if there is any bleeding.

How to Prepare for the Test

The health care provider may tell you to stop taking certain drugs that may affect the test. Such drugs include:
  • Aminoglycosides (for example, gentamicin)
  • Cimetidine
  • Heavy metal chemotherapy drugs (for example, Cisplatin)
  • Kidney damaging drugs such as cephalosporins (for example, cefoxitin)
  • Trimethoprim

How the Test Will Feel

When the needle is inserted to draw blood, some people feel moderate pain, while others feel only a prick or stinging sensation. Afterward, there may be some throbbing.

Why the Test is Performed

The test is done to evaluate kidney function. Creatinine is removed from the body entirely by the kidneys. If kidney function is abnormal, creatinine levels will increase in the blood (because less creatinine is released through your urine).
Creatinine levels also vary according to a person's size and muscle mass.

Normal Results

A normal value is 0.8 to 1.4 mg/dL.
Females usually have a lower creatinine than males, because they usually have less muscle mass.
Note: Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results.

The Kidneys and How They Works

.
What do the kidneys do?
The kidneys are bean-shaped organs, each about the size of a fist. They are located near the middle of the back, just below the rib cage, one on each side of the spine. The kidneys are sophisticated reprocessing machines. Every day, a person’s kidneys process about 200 quarts of blood to sift out about 2 quarts of waste products and extra water. The wastes and extra water become urine, which flows to the bladder through tubes called ureters. The bladder stores urine until releasing it through urination.
Drawing of the urinary tract in a male figure with labels for the kidneys, bladder, and ureters.
The kidneys remove wastes and water from the blood to form urine. Urine flows from the kidneys to the bladder through the ureters.
Wastes in the blood come from the normal breakdown of active tissues, such as muscles, and from food. The body uses food for energy and self-repairs. After the body has taken what it needs from food, wastes are sent to the blood. If the kidneys did not remove them, these wastes would build up in the blood and damage the body.
The actual removal of wastes occurs in tiny units inside the kidneys called nephrons. Each kidney has about a million nephrons. In the nephron, a glomerulus—which is a tiny blood vessel, or capillary—intertwines with a tiny urine-collecting tube called a tubule. The glomerulus acts as a filtering unit, or sieve, and keeps normal proteins and cells in the bloodstream, allowing extra fluid and wastes to pass through. A complicated chemical exchange takes place, as waste materials and water leave the blood and enter the urinary system.
Drawing of a kidney. Labels show where blood with wastes enter the kidney, clean blood leaves the kidney, and wastes (urine) are sent to the bladder. An inset shows a microscopic view of a nephron. Labels point to the glomerulus and the tubule.
In the nephron (left), tiny blood vessels intertwine with urine-collecting tubes. Each kidney contains about 1 million nephrons.
At first, the tubules receive a combination of waste materials and chemicals the body can still use. The kidneys measure out chemicals like sodium, phosphorus, and potassium and release them back to the blood to return to the body. In this way, the kidneys regulate the body’s level of these substances. The right balance is necessary for life.
In addition to removing wastes, the kidneys release three important hormones:
  • erythropoietin, or EPO, which stimulates the bone marrow to make red blood cells
  • renin, which regulates blood pressure
  • calcitriol, the active form of vitamin D, which helps maintain calcium for bones and for normal chemical balance.

RENAL FUNCTION TEST I


Creatinine Clearance CCr

The creatinine clearance is not widely done any more, due to the difficulty in assuring a complete urine collection. When doing such a determination, to assess the adequacy of a complete collection, one always calculates the amount of creatinine excreted over a 24-hour period. This amount varies with muscle mass, and is higher in young people vs. old, in blacks vs. whites, and in men vs. women. An unexpectedly low or high 24-hour creatinine excretion rate voids the test. Nevertheless, in cases where estimates of creatinine clearance from serum creatinine are unreliable, creatinine clearance remains a useful test. These cases include "estimation of GFR in individuals with variation in dietary intake (vegetarian diet, creatine supplements) or muscle mass (amputation, malnutrition, muscle wasting), since these factors are not specifically taken into account in prediction equations.

 Estimated values

eC_{Cr} = \frac { \mbox{(140 - Age)} \ \times \ \mbox{Mass (in kilograms)} \ \times \ [{0.85\ if\ Female}]} {\mbox{72} \ \times \ \mbox{Serum Creatinine (in mg/dL)}}
This formula expects weight to be measured in kilograms and creatinine to be measured in mg/dL, as is standard in the USA. The resulting value is multiplied by a constant of 0.85 if the patient is female. This formula is useful because the calculations are simple and can often be performed without the aid of a calculator
When serum creatinine is measured in µmol/L:
eC_{Cr} = \frac { \mbox{(140 - Age)} \ \times \ \mbox{Mass (in kilograms)} \ \times \ {Constant} } {\mbox{Serum Creatinine (in } \mu \mbox{mol/L)}}
Where Constant is 1.23 for men and 1.04 for women.
One interesting feature of the Cockcroft and Gault equation is that it shows how dependent the estimation of CCr is based on age. The age term is (140 - age). This means that a 20-year-old person (140-20 = 120) will have twice the creatinine clearance as an 80-year-old (140-80 = 60) for the same level of serum creatinine (120 is twice as great as 60). The C-G equation also shows that a woman will have a 15% lower creatinine clearance than a man at the same level of serum creatinine.

 Estimated GFR (eGFR) using Modification of Diet in Renal Disease (MDRD)

\mbox{eGFR} = \mbox{186}\ \times \ \mbox{Serum Creatinine}^{-1.154} \ \times \ \mbox{Age}^{-0.203} \ \times \ {[1.212\ if\ Black]} \ \times \ {[0.742\ if\ Female]}
For creatinine in µmol/L:
\mbox{eGFR} = \mbox{32788}\ \times \ \mbox{Serum Creatinine}^{-1.154} \ \times \ \mbox{Age}^{-0.203} \ \times \ {[1.212\ if\ Black]} \ \times \ {[0.742\ if\ Female]}
Creatinine levels in µmol/L can be converted to mg/dL by dividing them by 88.4. The 32788 number above is equal to 186×88.41.154.
\mbox{eGFR} = \mbox{170}\ \times \ \mbox{Serum Creatinine}^{-0.999} \ \times \ \mbox{Age}^{-0.176} \ \times \ {[0.762\ if\ Female]} \ \times \ {[1.180\ if\ Black]} \ \times \ \mbox{BUN}^{-0.170} \ \times \ \mbox{Albumin}^{+0.318}
Where the creatinine and blood urea nitrogen concentrations are both in mg/dL. The albumin concentration is in g/dL.
These MDRD equations are to be used only if the laboratory has NOT calibrated its serum creatinine measurements to isotope dilution mass spectroscopy (IDMS). When IDMS-calibrated serum creatinine is used (which is about 6% lower), the above equations should be multiplied by 175/186 or by 0.94086.
Since these formulae do not adjust for body mass, they (relative to the Cockcroft-Gault formula) underestimate eGFR for heavy people and overestimate it for underweight people. (see Cockcroft-Gault formula above)
Estimated GFR (eGFR) using the CKD-EPI formula
The CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) formula was published in May 2009. It was developed in an effort to create a formula more accurate than the MDRD formula, especially when actual GFR is greater than 60 mL/min per 1.73 m2.
Researchers pooled data from multiple studies to develop and validate this new equation. They used 10 studies that included 8254 participants, randomly using 2/3 of the data sets for development and the other 1/3 for internal validation. Sixteen additional studies, which included 3896 participants, were used for external validation.
The CKD-EPI equation performed better than the MDRD (Modification of Diet in Renal Disease Study) equation, especially at higher GFR, with less bias and greater accuracy. When looking at NHANES (National Health and Nutrition Examination Survey) data, the median estimated GFR was 94.5 mL/min per 1.73 m2 vs. 85.0 mL/min per 1.73 m2, and the prevalence of chronic kidney disease was 11.5% versus 13.1%.
The CKD-EPI equation, expressed as a single equation, is:
\mbox{eGFR} = \mbox{141}\ \times \ \mbox{min(SCr/k,1)}^{a} \ \times \ \mbox{max(SCr/k,1)}^{-1.209} \ \times \ \mbox{0.993}^{Age} \ \times \ {[1.018\ if\ Female]} \ \times \ {[1.159\ if\ Black]} \
where SCr is serum creatinine (mg/dL), k is 0.7 for females and 0.9 for males, a is -0.329 for females and -0.411 for males, min indicates the minimum of SCr/k or 1, and max indicates the maximum of SCr/k or 1.
A clearer version may be as follows: For creatinine (IDMS calibrated) in mg/dL:
African American Female
If serum creatinine (Scr) <= 0.7
\mbox{eGFR} = \mbox{166}\ \times \ \mbox{(SCr/0.7)}^{-0.329} \ \times \ \mbox{0.993}^{Age} \
If serum creatinine (Scr) > 0.7
\mbox{eGFR} = \mbox{166}\ \times \ \mbox{(SCr/0.7)}^{-1.209} \ \times \ \mbox{0.993}^{Age} \
African American Male
If serum creatinine (Scr) <= 0.9
\mbox{eGFR} = \mbox{163}\ \times \ \mbox{(SCr/0.9)}^{-0.411} \ \times \ \mbox{0.993}^{Age} \
If serum creatinine (Scr) > 0.9
\mbox{eGFR} = \mbox{163}\ \times \ \mbox{(SCr/0.9)}^{-1.209} \ \times \ \mbox{0.993}^{Age} \
White or other race Female
If serum creatinine (Scr) <= 0.7
\mbox{eGFR} = \mbox{144}\ \times \ \mbox{(SCr/0.7)}^{-0.329} \ \times \ \mbox{0.993}^{Age} \
If serum creatinine (Scr) > 0.7
\mbox{eGFR} = \mbox{144}\ \times \ \mbox{(SCr/0.7)}^{-1.209} \ \times \ \mbox{0.993}^{Age} \
White or other race Male
If serum creatinine (Scr) <= 0.9
\mbox{eGFR} = \mbox{141}\ \times \ \mbox{(SCr/0.9)}^{-0.411} \ \times \ \mbox{0.993}^{Age} \
If serum creatinine (Scr) > 0.9
\mbox{eGFR} = \mbox{141}\ \times \ \mbox{(SCr/0.9)}^{-1.209} \ \times \ \mbox{0.993}^{Age} \
\mbox{eGFR} = \mbox{exp}{(1.911+ 5.249/{Serum\ Creatinine} - 2.114/{Serum\ Creatinine}^2 - 0.00686 \ \times \ \mbox{Age} - {[0.205\ if\ Female]})}
If Serum Creatinine < 0.8 mg/dL, use 0.8 mg/dL for Serum Creatinine

Estimated GFR for children using Schwartz formula

In children, the Schwartz formula is used.This employs the serum (mg/dL), the child's height (cm) and a constant to estimate the glomerular filtration rate:
\mbox{eGFR} = \frac{ {k} \times {Height} }{Serum\ Creatinine}
Where k is a constant that depends on muscle mass, which itself varies with a child's age:
In first year of life, for pre-term babies K=0.33 and for full-term infants K=0.45
For infants and children of age 1 to 12 years, K=0.55
The method of selection of the K-constant value has been questioned as being dependent upon the gold-standard of renal function used (i.e., creatinine clearance, inulin clearance, etc.) and also may be dependent upon the urinary flow rate at the time of measurement
In 2009, the formula was updated to use standardized serum creatinine (recommend k=0.413) and additional formulas that allow improved precision were derived if serum cystatin measured in addition to serum creatinine importance of calibration of the serum creatinine level and the IDMS standardization effort

One problem with any creatinine-based equation for GFR is that the methods used to assay creatinine in the blood differ widely in their susceptibility to non-specific chromogens, which cause the creatinine value to be overestimated. In particular, the MDRD equation was derived using serum creatinine measurements that had this problem. The NKDEP program in the United States has attempted to solve this problem by trying to get all laboratories to calibrate their measures of creatinine to a "gold standard", which in this case is isotope dilution mass spectroscopy (IDMS). At the present time in late 2009 not all labs in the U.S. have changed over to the new system. There are two forms of the MDRD equation that are available, depending on whether or not creatinine was measured by an IDMS-calibrated assay. The CKD-EPI equation is designed to be used with IDMS-calibrated serum creatinine values only.

Cystatin C

Problems with creatinine (varying muscle mass, recent meat ingestion, etc.) have led to evaluation of alternative agents for estimation of GFR. One of these is, a ubiquitous protein secreted by most cells in the body (it is an inhibitor of cysteine protease).
Cystatin C is freely filtered at the glomerulus. After filtration, Cystatin C is reabsorbed and catabolized by the tubular epithelial cells, with only small amounts excreted in the urine. Cystatin C levels are therefore measured not in the urine, but in the bloodstream.
Equations have been developed linking estimated GFR to serum cystatin C levels. Most recently, some proposed equations have combined creatinine and cystatine
Normal ranges
The normal range of GFR, adjusted for is similar in men and women, and is in the range of 100-130 ml/min/1.73m2. In children, GFR measured by inulin clearance remains close to about 110 ml/min/1.73m2 down to about 2 years of age in both sexes, and then it progressively decreases. After age 40, GFR decreases progressively with age, by about 0.4 - 1.2 mL/min per year.

Chronic kidney disease stages 

Risk factors for kidney disease include diabetes, high blood pressure, family history, older age, ethnic group and smoking. For most patients, a GFR over 60 mL/min/1.73m2 is adequate. But significant decline of the GFR from a previous test result can be an early indicator of kidney disease requiring medical intervention. The sooner kidney dysfunction is diagnosed and treated the greater odds of preserving remaining nephrons, and preventing the need for dialysis.

The (CKD) is described by six stages; the most severe three are defined by the MDRD-eGFR value, and first three also depend on whether there is other evidence of kidney disease
0) Normal kidney function – GFR above 90mL/min/1.73m2
1) CKD1 – GFR above 90mL/min/1.73m2 with evidence of kidney damage
2) CKD2 (Mild) – GFR of 60 to 89 mL/min/1.73m2 with evidence of kidney damage
3) CKD3 (Moderate) – GFR of 30 to 59 mL/min/1.73m2
4) CKD4 (Severe) – GFR of 15 to 29 mL/min/1.73m2
5) CKD5 Kidney failure - GFR less than 15 mL/min/1.73m2 Some people add CKD5D for those stage 5 patients requiring dialysis; many patients in CKD5 are not yet on dialysis.
Note: others add a "T" to patients who have had a transplant regardless of stage.
Not all clinicians agree with the above classificaiton, suggesting that it may overlabel patients with mildly reduced kidney function, especially the elderly, as having a disease. A conference was held in 2009 regarding these controversies by Kidney Disease: Improving Global Outcomes (KDIGO) on CKD: Definition, Classification and Prognosis, gathering data on CKD prognosis to refine the definition and staging of CKD.